Signaling Pathway Governed by Lipid Derived Molecules as Secondary Messenger

Abstract

Research shown that the cell death, particularly apoptosis, can extend beyond single cell boundaries. Gap junctions IP3 diffusion, and sphingolipids play significant roles in membrane biology and regulation of cell function. S1P plays crucial role in the cardiovascular and immune systems, serving as a mediator of signaling during cell migration, differentiation, proliferation, and apoptosis. Intestinal phospholipid metabolism, including 1B phospholipase A2 and autotaxin-mediated pathways, contributes to cardiometabolic diseases through multiple mechanisms.


A potential strategy for treating cardiovascular and metabolic diseases is the therapeutic suppression of1B phospholipase A2 and autotaxin in the gastrointestinal tract. Cellular stress signalling, inflammation, resolution, and host defence responses are all significantly influenced by lysophospholipids such LPA and S1P. New therapies for cancer, vascular diseases, fibrotic disorders, and autoimmune diseases have been made possible by developments in lysophospholipid research.

Keywords: Apoptosis, Phospholipids, IP3, Sphingolipid

Downloads

Download data is not yet available.

References

Aikawa, S., Hashimoto, T., Kano, K., Aoki, J. (2015). Lysophosphatidic acid as a lipid mediator with multiple biological actions. J. Biochem, 157, 81–89. https://doi.org/10.1093/jb/mvu077
Bill, C. A., Vines, C. M. (2020). Phospholipase C. Adv Exp Med Biol. 1131:215-242. doi: 10.1007/978-3-030-12457-1_9.
Blaho, V. A., Hla, T. (2014). An update on the biology of sphingosine 1-phosphate receptors. J Lipid Res. 55(8):1596-608. https://doi.org/10.1194/jlr.R046300
Bononi, A., Missiroli, S., Poletti, F., Suski, J. M., Agnoletto, C., Bonora, M., De Marchi, E., Giorgi, C., Marchi, S., Patergnani, S., Rimessi, A., Wieckowski, M.R., Pinton, P. (2012). Mitochondria-associated membranes (MAMs) as hotspot Ca(2+) signalling units. Adv. Exp. Med. Biol., 740, 411–437. https://doi.org/10.1007/978-94-007-2888-2_17
Bravo, G. Á., Cedeño, R. R., Casadevall, M. P., Ramió-Torrentà, L. (2022). Sphingosine-1-Phosphate (S1P) and S1P Signaling Pathway Modulators, from Current Insights to Future Perspectives. Cells. 11(13), 2058. https://doi.org/10.3390/cells11132058
Cannino, G., Urbani, A., Gaspari, M., Varano, M., Negro, A., Filippi, A., Ciscato, F., Masgras, I., Gerle, C., Tibaldi, E., Brunati, A. M., Colombo, G., Lippe, G., Bernardi, P., Rasola, A. (2022). The mitochondrial chaperone TRAP1 regulates F-ATP synthase channel formation. Cell Death Differ. 29(12):2335-46. https://doi.org/10.1038/s41418-022-01020-0
Cardenas, C., Miller, R.A., Smith, I., Bui, T., Molgo, J., Muller, M., Vais, H., Cheung, K.H.,Yang, J., Parker, I., Thompson, C.B., Birnbaum, M.J., Hallows, K.R., Foskett, J.K. (2010). Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell, 142, 270–283. https://doi.org/10.1016/j.cell.2010.06.007
Cartier, A., Hla, T. (2019). Sphingosine 1-phosphate: Lipid signaling in pathology and therapy. Science. 366(6463):eaar5551. doi: 10.1126/science.aar5551
Case, R.M., Eisner, D., Gurney, A., Jones, O., Muallem, S., Verkhratsky, A. (2007). Evolution of calcium homeostasis: from birth of the first cell to an omnipresent signalling system. Cell Calcium, 42, 345–350. https://doi.org/10.1016/j.ceca.2007.05.001
Chen Y, Dou CE, Yi J, et al. (2018). Inhibitory effect of vanillin on RANKL-induced osteoclast formation and function through activating mitochondrial-dependent apoptosis signaling pathway. Life Sci., 208, 305-314. https://doi.org/10.1016/j.lfs.2018.07.048
Churchill, G.C., Louis, C.F. (1998). Roles of Ca2+, inositol trisphosphate and cyclic ADP-ribose in mediating intercellular Ca2+ signaling in sheep lens cells. J. Cell Sci., 111, 1217–1225. https://doi.org/10.1242/jcs.111.9.1217
Clair, C., Chalumeau, C., Tordjmann, T., Poggioli, J., Erneux, C., Dupont, G., Combettes, L. (2001). Investigation of the roles of Ca(2+) and InsP(3) diffusion in the coordination of Ca(2+) signals between connected hepatocytes. J. Cell Sci., 114, 1999–2007. https://doi.org/10.1242/jcs.114.11.1999
Costas-Ferreira C, Faro LRF. Systematic Review of Calcium Channels and Intracellular Calcium Signaling: Relevance to Pesticide Neurotoxicity. (2021). Int J Mol Sci. 22(24),13376. https://doi.org/10.3390/ijms222413376
De Stefani, D., Bononi, A., Romagnoli, A., Messina, A., De Pinto, V., Pinton, P., Rizzuto, R. (2012). VDAC1 selectively transfers apoptotic Ca2+ signals to mitochondria. Cell Death Differ., 19, 267–273. https://doi.org/10.1038/cdd.2011.92
Deegan, S., Saveljeva, S., Gorman, A. M., Samali, A. (2013). Stress-induced self-cannibalism: on the regulation of autophagy by endoplasmic reticulum stress. Cell Mol Life Sci. 70(14), 2425-41. doi: 10.1007/s00018-012-1173-4.
Eraso-Pichot, A., Pouvreau, S., Olivera-Pinto, A., Gomez-Sotres, P., Skupio, U., Marsicano, G. (2023). Endocannabinoid signaling in astrocytes. Glia. 71(1), 44-59. https://doi.org/10.1002/glia.24246
Farooqui A. A., Horrocks L. A. (2001). Plasmalogens, phospholipase A2,and docosahexaenoic acid turnover in brain tissue. J. Mol. Neurosci. 16, 263–72. https://doi.org/10.1385/jmn:16:2-3:263
Foskett, J.K., White, C., Cheung, K.H., Mak, D.O. (2007) Inositol trisphosphate receptor Ca2+ release channels. Physiol. Rev. 87, 593–658. https://doi.org/10.1152/physrev.00035.2006
Gambardella J, Morelli MB, Wang X, Castellanos V, Mone P, Santulli G. (2021). The discovery and development of IP3 receptor modulators: an update. Expert Opin Drug Discov. 16(6):709-718. https://doi.org/10.1080/17460441.2021.1858792
Groten, C. J., MacVicar, B. A. (2022). Mitochondrial Ca2+ uptake by the MCU facilitates pyramidal neuron excitability and metabolism during action potential firing. Commun Biol. 5(1), 900. https://doi.org/10.1038/s42003-022-03848-1
Harayama T, Shimizu T. (2020). Roles of polyunsaturated fatty acids, from mediators to membranes. J. Lipid Res, 61, 1150–60. https://doi.org/10.1194/jlr.R120000800
Higashi K, Matsuzaki E, Hashimoto Y, et al. (2016). Sphingosine-1-phosphate/S1PR2- mediated signaling triggers Smad1/5/8 phosphorylation and thereby induces Runx2 expression in osteoblasts. Bone, 93, 1-11. https://doi.org/10.1016/j.bone.2016.09.003
Higo, T., Hamada, K., Hisatsune, C., Nukina, N., Hashikawa, T., Hattori, M., Nakamura, T., Mikoshiba, K. (2010). Mechanism of ER stress-induced brain damage by IP(3) receptor. Neuron, 68, 865–878. https://doi.org/10.1016/j.neuron.2010.11.010
Hishikawa, D., Hashidate, T., Shimizu, T., Shindou, H. (2014). Diversity and function of membrane glycerophospholipids generated by the remodeling pathway in mammalian cells. J. Lipid Res, 55,799–807. https://doi.org/10.1194/jlr.R046094
Hla, T., Maciag, T. (1990). An abundant transcript induced in differentiating human endothelial cells encodes a polypeptide with structural similarities to G-protein-coupled receptors. J. Biol. Chem, 265, 9308–13.
Hofer, T., Venance, L., Giaume, C. (2002). Control and plasticity of intercellular calcium waves in astrocytes: a modeling approach. J. Neurosci., 22, 4850–4859. https://doi.org/10.1523/JNEUROSCI.22-12-04850.2002
Holthuis J. C., Menon A. K. (2014). Lipid landscapes and pipelines in membrane homeostasis. Nature, 510, 48–57. https://doi.org/10.1038/nature13474
Hossain M. S., Mawatari S., Fujino T. (2020). Biological functions of plasmalogens. Adv. Exp. Med. Biol, 1299, 171–93. https://doi.org/10.1007/978-3-030-60204-8_13
Huang, T., Zhou, J., Wang, J. (2022). Calcium and calcium-related proteins in endometrial cancer: opportunities for pharmacological intervention. Int J Biol Sci. 18(3), 1065-1078. doi: 10.7150/ijbs.68591.
Hutami, I. R., Izawa, T., Mino-Oka, A., et al. (2017). Fas/S1P1 crosstalk via NFkappaB activation in osteoclasts controls subchondral bone remodeling in murine TMJ arthritis. Biochem Biophys Res Commun., 490, 1274-1281. doi: 10.1016/j.bbrc.2017.07.006.
Ishii, M., Egen, J. G., Klauschen, F., et al. (2009). Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature, 458, 524-528. https://doi.org/10.1038/nature07713
Ishii, M., Kikuta, J. (2013). Sphingosine-1-phosphate signaling controlling osteoclasts and bone homeostasis. Biochim Biophys Acta., 1831, 223-227. https://doi.org/10.1016/j.bbalip.2012.06.002
Ishii, M., Kikuta, J., Shimazu, Y., Meier-Schellersheim, M., Germain, R. N. (2010). Chemorepulsion by blood S1P regulates osteoclast precursor mobilization and bone remodeling in vivo. J Exp Med., 207, 2793-2798. https://doi.org/10.1084/jem.20101474
Jimenez, V., Mesones, S. (2022). Down the membrane hole: Ion channels in protozoan parasites. PLoS Pathog. 18(12), e1011004. https://doi.org/10.1371/journal.ppat.1011004
Kano, K., Aoki, J., Hla, T. (2022). Lysophospholipid Mediators in Health and Disease. Annu Rev Pathol. 24;17:459-483. https://doi.org/10.1146/annurev-pathol-050420-025929
Kharechkina, E. S, Nikiforova, A. B, Kruglov, A. G. (2023). Regulation of Mitochondrial Permeability Transition Pore Opening by Monovalent Cations in Liver Mitochondria. Int J Mol Sci. 24(11), 9237. https://doi.org10.3390/ijms24119237
Kihara Y, Maceyka M, Spiegel S, Chun J. (2014). Lysophospholipid receptor nomenclature review: IUPHAR Review 8. Br. J. Pharmacol, 171, 3575–94. https://doi.org/10.1111/bph.12678
Kikuta J, Kawamura S, Okiji F, et al. (2013). Sphingosine-1-phosphate-mediated osteoclast precursor monocyte migration is a critical point of control in antibone-resorptive action of active vitamin D. Proc Natl Acad Sci U S A., 110, 7009-7013. https://doi.org/10.1073/pnas.1218799110
Kim, J., Kim, H-S., Chung, J. H. (2023). Molecular mechanisms of mitochondrial DNA release and activation of the cGAS-STING pathway. Exp Mol Med., 55(3), 510-19. https://doi.org/10.1038/s12276-023-00965-7
Kobayashi T, Menon A. K. (2018). Transbilayer lipid asymmetry. Curr. Biol, 28, R386–91. https://doi.org/10.1016/j.cub.2018.01.007
Kono M, Belyantseva IA, Skoura A, et al. (2007). Deafness and striavascularis defects in S1P2 receptor-null mice. J Biol Chem., 282, 10690-10696. https://doi.org/10.1074/jbc.M700370200
Kroemer, G., Galluzzi, L., Brenner, C. (2007). Mitochondrial membrane permeabilization in cell death. Physiol. Rev., 87, 99–163. https://doi.org/10.1152/physrev.00013.2006
Lampasso J. D., Kamer A., Margarone J., Dziak R. (2001). Sphingosine-1-phosphate effects on PKC isoform expression in human osteoblastic cells. Prostaglandins Leukot Essent Fatty Acids., 65, 139-146. https://doi.org/10.1054/plef.2001.0302
Lee, M. J., Van Brocklyn, J. R., Thangada, S., Liu, C. H., Hand, A. R., et al. (1998). Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science, 279,1552–55. https://doi.org/10.1126/science.279.5356.1552
Liang, Z., Wang, X., Hao, Y., Qiu, L., Lou, Y., Zhang, Y., Ma, D., Feng, J. (2020). The Multifaceted Role of Astrocyte Connexin 43 in Ischemic Stroke Through Forming Hemichannels and Gap Junctions. Front Neurol. 31(11), 703. https://doi.org10.3389/fneur.2020.00703
Lindner, P., Christensen, S. B., Nissen, P., Møller, J. V., Engedal, N. (2020). Cell death induced by the ER stressor thapsigargin involves death receptor 5, a non-autophagic function of MAP1LC3B, and distinct contributions from unfolded protein response components. Cell Commun Signal. 27,18(1),12. https://doi.org/10.1186/s12964-019-0499-z
Liu, Y. Y., Hill, R. A., Li, Y. T. (2013). Ceramide glycosylation catalyzed by glucosylceramide synthase and cancer drug resistance. Adv Cancer Res. 117, 59-89. https://doi.org/10.1016/B978-0-12-394274-6.00003-0
Madhamanchi, K., Madhamanchi, P., Jayalakshmi, S., Panigrahi, M., Patil, A., Phanithi, P. B. (2022). Endoplasmic reticulum stress and unfolded protein accumulation correlate to seizure recurrence in focal cortical dysplasia patients. Cell Stress Chaperones. 27(6), 633-643. https://doi.org/10.1007/s12192-022-01301-0
Malik, S., Valdebenito, S., D'Amico, D., Prideaux, B., Eugenin, E. A. (2021). HIV infection of astrocytes compromises inter-organelle interactions and inositol phosphate metabolism: A potential mechanism of bystander damage and viral reservoir survival. Prog Neurobiol. 206, 102157. https://doi.org/10.1016/j.pneurobio.2021.102157
Manni, M. M., Sot, J., Arretxe, E., Gil-Redondo, R., Falcón-Pérez, J. M., Balgoma, D., Alonso, C., Goñi, F. M., Alonso, A. (2018). The fatty acids of sphingomyelins and ceramides in mammalian tissues and cultured cells: Biophysical and physiological implications. Chem Phys Lipids. 217, 29-34. https://doi.org/10.1016/j.chemphyslip.2018.09.010
Matsuzaki E, Hiratsuka S, Hamachi T, et al. (2013). Sphingosine-1-phosphate promotes the nuclear translocation of beta-catenin and thereby induces osteoprotegerin gene expression in osteoblast-like cell lines. Bone, 55, 315-324. https://doi.org/10.1016/j.bone.2013.04.008
Moolenaar W.H., van Meeteren L. A., Giepmans B. N. (2004). The ins and outs of lysophosphatidic acid signalling. Bioessays, 26, 870–81. https://doi.org/10.1002/bies.20081
Morciano G, Marchi S, Morganti C, Sbano L, Bittremieux M, Kerkhofs M, Corricelli M, Danese A, Karkucinska-Wieckowska A, Wieckowski MR, Bultynck G, Giorgi C, Pinton P. (2018). Role of Mitochondria-Associated ER Membranes in Calcium Regulation in Cancer-Specific Settings. Neoplasia. 20(5), 510-523. https://doi.org/10.1016/j.neo.2018.03.005
Nielsen, M. S., Axelsen, L. N., Sorgen, P. L., Verma, V., Delmar, M., Holstein-Rathlou, N. H. (2012). Gap junctions. Compr Physiol. 2(3),1981-2035. https://doi.org/10.1002/cphy.c110051
Oh, B. C. (2023). Phosphoinositides and intracellular calcium signaling: novel insights into phosphoinositides and calcium coupling as negative regulators of cellular signaling. Exp Mol Med. 55(8), 1702-12. https://doi.org/10.1038/s12276-023-01067-0
Parys, J.B., De Smedt, H. (2012). Inositol 1,4,5-trisphosphate and its receptors. Adv. Exp.Med. Biol., 740, 255–279. https://doi.org/10.1007/978-94-007-2888-2_11
Patergnani, S., Suski, J.M., Agnoletto, C., Bononi, A., Bonora, M., De Marchi, E., Giorgi, C. Marchi, S., Missiroli, S., Poletti, F. Rimessi, A., Duszynski, J., Wieckowski, M.R., Pinton, P. (2011). Calcium signaling around Mitochondria Associated Membranes (MAMs). Cell Commun. Signal., 9, 19. https://doi.org/10.1186/1478-811X-9-19
Pawar, A., Pardasani, K. R. (2023). Mechanistic insights of neuronal calcium and IP3 signaling system regulating ATP release during ischemia in progression of Alzheimer's disease. Eur Biophys J. 52(3):153-173. https://doi.org/10.1007/s00249-023-01660-1
Pizzo, P., Drago, I., Filadi, R., Pozzan, T. (2012). Mitochondrial Ca(2)(+) homeostasis: mechanism, role, and tissue specificities. Pflugers Arch., 464, 3–17. https://doi.org/10.1007/s00424-012-1122-y
Rasola, A., Bernardi, P. (2011). Mitochondrial permeability transition in Ca(2+)-dependent apoptosis and necrosis. Cell Calcium, 50, 222–233. https://doi.org/10.1016/j.ceca.2011.04.007
Rizzuto, R., Marchi, S., Bonora, M., Aguiari, P., Bononi, A., De Stefani, D., Giorgi, C., Leo, S., Rimessi, A., Siviero, R., Zecchini, E., Pinton, P. (2009). Ca(2+) transfer from the ER to mitochondria: when, how and why. Biochim. Biophys. Acta., 1787, 1342–1351. https://doi.org/10.1016/j.bbabio.2009.03.015
Rosa, N., Ivanova, H., Wagner, L. E 2nd, Kale, J., La Rovere, R., Welkenhuyzen, K., Louros, N., Karamanou, S., Shabardina, V., Lemmens, I., Vandermarliere, E., Hamada K, Ando H, Rousseau F, Schymkowitz J, Tavernier J, Mikoshiba K, Economou A, Andrews DW, Parys JB, Yule DI, Bultynck G. (2022). Bcl-xL acts as an inhibitor of IP3R channels, thereby antagonizing Ca2+-driven apoptosis. Cell Death Differ. 29(4):788-805. https://doi.org/10.1038/s41418-021-00894-w
Rosen, H., Gonzalez-Cabrera, P. J., Sanna, M. G., Brown, S. (2009). Sphingosine 1-phosphate receptor signaling. Annu. Rev. Biochem, 78, 743–68. https://doi.org/10.1126/science.aar5551
Roy, S.S., Ehrlich, A.M. Craigen, W.J. Hajnoczky, G. (2009). VDAC2 is required for truncated BID-induced mitochondrial apoptosis by recruiting BAK to the mitochondria. EMBO Rep., 10, 1341–1347. https://doi.org/10.1038/embor.2009.219
Ruffinatti, F. A., Lomazzi, S., Nardo, L., Santoro, R., Martemiyanov, A., Dionisi, M., Tapella, L., Genazzani, A. A., Lim, D., Distasi, C., Caccia, M. (2020). Assessment of a Silicon-Photomultiplier-Based Platform for the Measurement of Intracellular Calcium Dynamics with Targeted Aequorin. ACS Sens. 5(8), 2388-2397. https://doi.org/10.1021/acssensors.0c00277
Ryu J, Kim HJ, Chang E-J, Huang H, Banno Y, Kim H-H. (2006). Sphingosine 1-phosphate as a regulator of osteoclast differentiation and osteoclast-osteoblast coupling. EMBO J., 25, 5840-5851. https://doi.org/10.1038/sj.emboj.7601430
Sammels, E., Parys, J. B., Missiaen, L., De Smedt, H., Bultynck, G. (2010). Intracellular Ca2+ storage in health and disease: a dynamic equilibrium. Cell Calcium. 47(4):297-314. https://doi.org/10.1016/j.ceca.2010.02.001
Sayedyahossein, S., Thines, L., Sacks, D. B. (2023). Ca2+ signaling and the Hippo pathway: Intersections in cellular regulation. Cell Signal. 110,110846. https://doi.org/10.1016/j.cellsig.2023.110846
Scemes, E., Suadicani, S.O., Spray, D.C. (2000). Intercellular communication in spinal cord astrocytes: fine tuning between gap junctions and P2 nucleotide receptors in calcium wave propagation. J. Neurosci., 20, 1435–1445. https://doi.org/10.1523/JNEUROSCI.20-04-01435.2000
Sheppe, A. E. F., Edelmann, M. J. (2021). Roles of Eicosanoids in Regulating Inflammation and Neutrophil Migration as an Innate Host Response to Bacterial Infections. Infect Immun. 89(8), e0009521. doi: 10.1128/IAI.00095-21.
Shoshan-Barmatz, V., De Pinto, V., Zweckstetter, M. Raviv, Z., Keinan, N., Arbel, N. (2010). VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol. Aspects Med., 31, 227–285. https://doi.org/10.1016/j.mam.2010.03.002
Sipos, A., Ujlaki, G., Mikó, E., Maka, E., Szabó, J., Uray, K., Krasznai, Z., Bai, P. (2021). The role of the microbiome in ovarian cancer: mechanistic insights into oncobiosis and to bacterial metabolite signaling. Mol Med. 27(1), 33. https://doi.org/10.1186/s10020-021-00295-2
Spolaor, S., Rovetta, M., Nobile, M. S., Cazzaniga, P., Tisi, R. , Besozzi, Daniela. (2022). Modeling Calcium Signaling in S. cerevisiae Highlights the Role and Regulation of the Calmodulin-Calcineurin Pathway in Response to Hypotonic Shock. Front Mol Biosci, 18(9), 856030. https://doi.org/10.3389/fmolb.2022.856030
Szabadkai, G., Bianchi, K., Varnai, P., De Stefani, D., Wieckowski, M.R., Cavagna, D., Nagy, A.I., Balla, T., Rizzuto, R. (2006). Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J. Cell Biol., 175, 901–911. https://doi.org/10.1083/jcb.200608073
Szalai, G., Krishnamurthy, R., Hajnoczky, G. (1999). Apoptosis driven by IP(3)-linked mitochondrial calcium signals. EMBO J. 18(22):6349-61. https://doi.org/10.1093/emboj/18.22.6349
Tait, S.W., Green, D.R. (2010). Mitochondria and cell death: outer membrane permeabilization and beyond. Nat. Rev. Cancer 11(9), 621–632. https://doi.org/10.1038/nrm2952
Tirosh, A., Tuncman, G., Calay, E. S., Rathaus, M., Ron, I., Tirosh, A., Yalcin, A., Lee, Y. G., Livne, R., Ron, S., Minsky, N., Arruda, A. P., Hotamisligil, G. S. (2021) Intercellular Transmission of Hepatic ER Stress in Obesity Disrupts Systemic Metabolism. Cell Metab. 33(2), 319-333.e6. https://doi.org/10.1016/j.cmet.2020.11.009
Tokumura A., Fukuzawa K., Tsukatani H. (1978). Effects of synthetic and natural lysophosphatidic acids on the arterial blood pressure of different animal species. Lipids, 13, 572–74. https://doi.org/10.1007/BF02533598
Turovsky, E. A., Varlamova, E. G., Turovskaya, M. V. (2021) Activation of Cx43 Hemichannels Induces the Generation of Ca2+ Oscillations in White Adipocytes and Stimulates Lipolysis. Int J Mol Sci. 22(15), 8095. https://doi.org/10.3390/ijms22158095
Verma, V., Hallett, M. B., Leybaert, L., Martin, P. E., Evans, W. H. (2009). Perturbing plasma membrane hemichannels attenuates calcium signalling in cardiac cells and HeLa cells expressing connexins. Eur J Cell Biol. 88(2):79-90. https://doi.org/10.1016/j.ejcb.2008.08.005
Yang, Y. F., Yang, W., Liao, Z. Y., Wu, Y. X., Fan, Z., Guo, A., Yu, J., Chen, Q. N., Wu, J. H., Zhou, J., Xiao, Q. (2021). MICU3 regulates mitochondrial Ca2+-dependent antioxidant response in skeletal muscle aging. Cell Death Dis. 29, 12(12):1115. https://doi.org/10.1038/s41419-021-04400-5
Yu, J., Qian, H., Li, Y., Wang, Y., Zhang, X., Liang, X., Fu, M., Lin, C. (2007). Therapeutic effect of arsenic trioxide (As2O3) on cervical cancer in vitro and in vivo through apoptosis induction. Cancer Biol. Ther., 6, 580–586. doi: 10.4161/cbt.6.4.3887.
Yuan H, Xu J, Zhu Y, Li L, Wang Q, Yu Y, Zhou B, Liu Y, Xu X, Wang Z. (2020). Activation of calcium sensing receptor mediated autophagy in high glucose induced cardiac fibrosis in vitro. Mol Med Rep. 22(3), 2021-31. https://doi.org/10.3892/mmr.2020.11277
Zalk, R., Israelson, A., Garty, E.S., Azoulay-Zohar, H., Shoshan-Barmatz, V. (2005). Oligomeric states of the voltage-dependent anion channel and cytochrome c release from mitochondria. Biochem. J., 386, 73–83. https://doi.org/10.1042/BJ20041356
Zambelli V.O., Picolo G., Fernandes C. A. H., Fontes M. R. M., Cury Y. (2017). Secreted phospholipases A2 from animal venoms in pain and analgesia. Toxins, 9, 406. https://doi.org/10.3390/toxins9120406
Zhang, L., Dong, Y., Wang, Y., Hu, W., Dong, S., Chen, Y. (2020). Sphingosine-1-phosphate (S1P) receptors: Promising drug targets for treating bone-related diseases. J Cell Mol Med. 24(8), 4389-4401. https://doi.org/10.1111/jcmm.15155
Zhang, X., Huang, R., Zhou, Y., Zhou, W., Zeng, X. (2020). IP3R Channels in Male Reproduction. Int J Mol Sci. 21(23):9179. https://doi.org/10.3390/ijms21239179
Zheng, Y., Shi, Y., Tian, C., Jiang, C., Jin, H., Chen, J., Almasan, A., Tang, H. Chen, Q. (2004). Essential role of the voltage-dependent anion channel (VDAC) in mitochondrial permeability transition pore opening and cytochrome c release induced by arsenic trioxide. Oncogene, 23, 1239–1247. https://doi.org/10.1038/sj.onc.1207205
Statistics
1162 Views | 748 Downloads
How to Cite
Kundu, D., & Halder, K. (2024). Signaling Pathway Governed by Lipid Derived Molecules as Secondary Messenger. International Journal of Advancement in Life Sciences Research, 7(1), 1-14. https://doi.org/https://doi.org/10.31632/ijalsr.2024.v07i01.001